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ALGEBROID PRESTACKS AND DEFORMATIONS
OF RINGED SPACES

WENDY LOWEN

Abstract. For a ringed space (X,O), we show that the deformations of the
abelian category Mod(O) of sheaves of O-modules (Lowen and Van den Bergh,
2006) are obtained from algebroid prestacks, as introduced by Kontsevich. In
case X is a quasi-compact separated scheme the same is true for Qch(O), the
category of quasi-coherent sheaves on X. It follows in particular that there is
a deformation equivalence between Mod(O) and Qch(O).

1. Introduction

In [7] Kontsevich proves that any Poisson bracket on a C∞-manifold can be
canonically quantized. Similarly, in the algebraic case one would like to quantize
the structure sheaf O of a smooth algebraic variety X. This can to a certain extent
be done, but the gluing questions are more delicate and extra conditions are needed
(see [16]).

However in [6] Kontsevich takes a different approach: corresponding to a Poisson
bracket on X he introduces a deformation of O in the category of algebroid prestacks
on X. An algebroid prestack is the linear analogue of a gerbe (see below for a precise
definition).

The key point is that to an algebroid prestack one can associate canonically an
abelian category of coherent sheaves (in the Noetherian case). One may think of this
abelian category as a deformation of coh(O). Hence in this way the quantization
of a Poisson bracket in the algebraic case is achieved in complete generality.

In the current paper we show that Kontsevich’s approach is very natural and that
indeed under weak hypotheses all deformations of the abelian categories relevant
to algebraic geometry are obtained from algebroid prestacks. We will do this in the
framework of the general (infinitesimal) deformation theory of abelian categories
which was developed in [11].

Here is the definition of an algebroid prestack [4, 6], which will be a central
notion in this paper. Recall first that a fibered category [13] is, roughly speaking,
a presheaf of categories where the restriction functors commute only up to given
isomorphisms, a prestack is a fibered category which satisfies “gluing for maps”
but not necessarily for objects, and a stack [13] is a prestack satisfying “gluing for
objects”.
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Definition 1.1. An algebroid prestack A on a topological space X is a prestack of
linear categories satisfying the following properties.

(1) Any point x ∈ X has a neighborhood U such that A(U) �= ∅.
(2) If A, B ∈ A(U), then every point x ∈ U has a neigborhood V ⊂ U such

that A|V ∼= B|V .

If O is a sheaf of rings on X and if for U ⊂ X open we identify O(U) with a
one-object category, then O trivially defines an algebroid prestack on X. Note that
this is not a stack. The associated stack is

(1) U �→ {locally free rank one OU -modules}.
Since we prefer to work with O rather than with (1) we will use algebroid prestacks
rather than algebroid stacks. On the level of module categories, this doesn’t make
any difference (see Proposition 2.1).

Next we briefly sketch the theory developed in [11, 12]. We consider deformations
of abelian categories along a surjective map S −→ R of commutative coherent rings
with nilpotent kernel I. An S-deformation of an R-linear abelian category C is by
definition an S-linear abelian category D together with an equivalence DR

∼= C
where DR is the full subcategory of R-objects in D, i.e. those objects annihilated
by I. In order to control this deformation theory one has to restrict oneself to flat
abelian categories. This is a relatively technical notion but for an R-linear category
with enough injectives it simply means that the Hom-sets between injectives are
R-flat.

One of the results of [11] is that for an R-algebra A, there is an equivalence
between

(1) flat abelian deformations of Mod(A),
(2) flat algebra deformations of A,

or in geometric terms, a deformation of an afine space is affine.
The key point to prove this result is that the finitely generated projective gen-

erator A of Mod(A) can be lifted uniquely (up to isomorphism) to any abelian
deformation. This follows from the fact that when I2 = 0 the liftings of A are
governed by an obstruction theory [10] involving Ext1,2

A (A, I ⊗R A), which are zero.
One could hope for a similar equivalence between deformations of Mod(O) and

O, but this is only true if we consider deformations of O in a more general category
than ringed spaces.

To be able to state Theorem 1.2 below, which describes the deformations of
Mod(O) and which is one of our main results, we note that for an algebroid prestack
A on X we may define an associated abelian category Mod(A). The objects of
Mod(A) are given by the linear prestack maps A −→ Mod(R), where Mod(R)
denotes the stack of sheaves of R-modules on X. It is easy to see that this definition
gives the expected result for A = O. The following is contained in Theorem 3.14.

Theorem 1.2. Let (X,O) be a flat R-linear ringed space. Then every flat S-
deformation of Mod(O) is of the form Mod(A) where A is an S-linear algebroid
prestack on X, which is a flat weak deformation of O (in a sense to be made precise,
see §3.1).

To get an idea how the algebroid prestack A may be constructed, let D be a
flat abelian S-deformation of Mod(O). Using localization theory D may be trans-
formed into a deformation of the stack Mod(O) in the category of stacks of abelian
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categories on X. Then we put

(2) A(U) = {flat liftings of OU to D(U)}.
The fact that this prestack satisfies the conditions (1), (2) in Definition 1.1 follows
from the obstruction theory in [10].

In Theorem 3.14 we obtain a 1-1 correspondence between flat deformations of
Mod(O) and of O (in the sense explained in §3.1). The proof of this correspondence
uses a “liftable” characterization of linear prestack maps

A −→ C
inducing an equivalence of stacks

C ∼= Mod(A).

This characterization is stated in the main Theorem 2.22 of Section 2. It is a
“local” analogue of the standard characterization of linear maps a −→ C inducing
an equivalence of categories C ∼= Mod(a) (Theorem 2.17). Our proof of Theorem
2.22 uses additive sheaf theory and, in particular, the main result of [9].

If we now turn from an arbitrary ringed space to a ringed space (X,O) with
an acyclic basis U (see §3.5), the situation of Theorem 1.2 becomes remarkably
simpler. Indeed, starting from a flat abelian S-deformation D of Mod(O) as above,
the acyclicity condition implies, again using the obstruction theory of [10], that
for U ∈ U the object OU can be lifted uniquely (up to isomorphism) to D(U).
Hence A(U) defined in (2) is itself an algebroid, i.e. a nonempty linear category
in which all objects are isomorphic. Consequently, A|U is equivalent to a twisted
presheaf on U (i.e. a presheaf where the restriction maps commute only up to given
isomorphisms, see Definition 2.12). The following is contained in Theorem 3.22.

Theorem 1.3. Let (X,O) be a flat R-linear ringed space with acyclic basis U .
There is an equivalence between

(1) flat deformations of the abelian category Mod(O);
(2) flat deformations of O|U as a twisted presheaf;
(3) flat deformations of O|U as a fibered category (in the obvious, pointwise

sense).

Since deforming the fibered category O|U is readily seen to be equivalent to
deforming the linear category oU with Ob(oU ) = U and

oU (V, U) =

{
O(V ) if V ⊂ U

0 else

associated to O|U in [11, Theorem 1.3] is actually a reformulation of [11, Theorem
8.18]. An important advantage of this reformulation is that it allows us to make
the connection with deformations of quasi-coherent sheaves.

So, finally, let (X,O) be a quasi-compact separated scheme with a finite affine
covering V which is closed under intersections, and let U be the basis of all affine
open sets contained in some V ∈ V . Suppose we are given a deformation A of the
prestack O|U . For every U , there is an equivalence between flat linear deformations
of O(U) and flat abelian deformations of the module category Mod(O(U)). These
deformations constitute a stack of deformed module categories Mod(A(U)) on U ,
and we can “glue” them together to obtain a deformation Qch(U ,A) of Qch(X).
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In fact it suffices to glue the categories Mod(A(V )) for V ∈ V . The following final
result is contained in Theorem 3.26.

Theorem 1.4. Let (X,O) be a quasi-compact separated scheme with a finite affine
covering V which is closed under intersections. There is an equivalence between

(1) flat deformations of the abelian category Mod(O);
(2) flat deformations of the abelian category Qch(O);
(3) flat deformations of O|V as a twisted presheaf;
(4) flat deformations of the linear category oV associated to O|V .

The analogue of Theorem 1.4 for Hochschild cohomology (which in particular
yields Theorem 1.4 if R is a field of characteristic zero) has been proved in [12].

2. Linear fibered categories and stacks of sheaves

2.1. Introduction. Throughout, R will be a coherent, commutative ring.
Subsections 2.2, 2.3, and 2.4 of this section contain some preliminaries on fibered

categories, prestacks, stacks and sheaves over them in the context of R-linear cat-
egories. Roughly speaking, an R-linear fibered category is a presheaf of R-linear
categories where the restriction functors commute only up to given isomorphisms.
Let A be an R-linear fibered category on a topological space X. Associated to
A we have a stack Mod(A) of sheaves on A and a canonical “Yoneda-morphism”
A −→ Mod(A) of fibered categories. The aim of this chapter is to characterize this
morphism intrinsically in a way that can be lifted under deformation. In the next
section, we will use this characterization to prove that an abelian deformation of
the stack Mod(A) is again of the form Mod(B) for a certain kind of deformation
B of A. In this section, however, there is no reference to deformations! (except to
point out where a certain result will be used later on).

The characterization of A −→ Mod(A) (which is completed in §2.9) is twofold.
First of all, we need to pinpoint some liftable properties of a stack of Grothendieck
categories C, which ensure that the restriction functors j∗ : C(U) −→ C(V ) for
V ⊂ U are exact and come equipped with a fully faithful right adjoint j∗ and a fully
faithful exact left adjoint j! (as is the case for Mod(A)). We give such conditions in
terms of localizing subcategories in §2.5. Next we need to characterize morphisms

(3) A −→ C
yielding an equivalence of stacks C ∼= Mod(A). This will be done using additive
topologies and sheaves. We develop the necessary preliminaries on this subject
in §2.7. For every open U , we associate to the fibered category A|U an additive
category aU , which in the present setting comes with a natural morphism

(4) aU −→ C(U).

The category aU naturally inherits an additive Grothendieck topology TU from the
canonical topology on X, and we have an equivalence

Mod(A|U ) ∼= Sh(aU , TU ).

According to [10], all we have to do to characterize (3) yielding C ∼= Mod(A) is
require that

• every morphism (4) satisfies the conditions (G), (F) and (FF) (see §2.7),
• the additive topology that aU inherits from C(U) is precisely TU .
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Equivalently, we can require that

• each (aU , TU ) −→ (C(U), Tepi) satisfies (G), (F) and (FF),
• the objects of aU become locally finitely presented and locally projective

(Definition 2.20) in C.

This is precisely the statement of Theorem 2.22, which is thus a perfect analogue
of the characterization of the Yoneda embedding a −→ Mod(a) of a linear category
into its module category: a functor

(5) a −→ C

from a into a Grothendieck category C yields an equivalence C ∼= Mod(a) precisely
when

• (5) satisfies (G), (F) and (FF),
• the additive topology on a induced by Tepi on C is the trivial topology

or, equivalently, when

• (5) is fully faithful and the objects of a are generators in C,
• the objects of a are finitely presented and projective in C.

With an eye on applications in the next section, we introduce some notions of
flatness for fibered categories in §2.6, and we prove some preliminaries on algebroid
fibered categories in §2.8.

2.2. Fibered graded categories. For the classical theory of fibered categories we
refer the reader to [2]. In this section we briefly present linear versions of some of
the basic concepts. This involves the notion of a linear category graded over a base
category.

Let U be a base category and R a commutative ring. A U-graded R-linear
category (U-R-category) a consists of a (nonlinear) category a and a functor F :
a −→ U such that:

• for every A, A′ ∈ a and f : F (A) −→ F (A′) in U , the fiber af (A, A′) = {a :
A −→ A′ ∈ a |F (a) = f} has an R-module structure;

• for every A, A′, A′′ ∈ Ob(a), f : F (A) −→ F (A′), g : F (A′) −→ F (A′′),
composition defines an R-module morphism ag(A′, A′′) ⊗ af (A, A′) −→
agf (A, A′′).

A U-R-category a has an associated R-linear category a with the same object set
and with a(A, A′) =

∐
U(F (A),F (A′)) af (A, A′). For U ∈ U , we denote by a(U) the

fiber category of all objects A with F (A) = U and morphisms a with F (a) = 1U .
Note that if Ob(U) = Ob(a) = {∗}, then U is a semigroup and a is a U-graded

R-algebra in the classical sense.
There are obvious notions of U-R-functors and U-R-natural transformations

making U-R-categories into a 2-category 2Cat(U , R). A U-R-functor from F :
a −→ U to G : b −→ U is a functor K : a −→ b with GK = F and defin-
ing R-module morphisms Kf : af (A, A′) −→ bf (K(A), K(A′)). A U-R-natural
transformation η : K −→ L between K, L : a −→ b is an ordinary natural
transformation with ηA ∈ b1(K(A), L(A)) (for A ∈ a). The 2-category struc-
ture of 2Cat(U , R) yields a natural notion of equivalence of U-R-categories. Sim-
ilar to the case of ordinary categories, K : a −→ b is an equivalence if and
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only if all the Kf : af (A, A′) −→ bf (K(A), K(A′)) are isomorphisms and all the
KU : a(U) −→ b(U) are essentially surjective (hence equivalences of categories).

Let a be a U-graded R-linear category. A morphism a ∈ af (A, A′) is called
cartesian if for every B and g : F (B) −→ F (A), the map ag(B, A) −→ afg(B, A′)
is an isomorphism. Note that for U ∈ U , every section in a(U) is obviously carte-
sian. The U-R-category a is called fibered if for every f : V −→ U in U and A
in a with F (A) = U , there is a B with F (B) = V and a cartesian morphism
a ∈ af (B, A). A morphism (1-cell) of fibered U-R-categories is a U-R-functor
preserving cartesian morphisms. Fibered U-R-categories inherit the 2-category
structure of 2Cat(U , R), yielding a 2-category 2Fib(U , R) together with a 2-functor
2Fib(U , R) −→ 2Cat(U , R).

Let a be a fibered U-R-category. Put A(U) = a(U). Suppose we choose for
every A ∈ a(U) and f : V −→ U a cartesian morphism f∗(A) −→ A. Then clearly
A(f) = f∗ defines an R-linear functor A(U) −→ A(V ). This makes A into a
pseudofunctor from Uop

to the 2-category 2Cat(R) of R-linear categories, i.e.

• an R-linear category A(U) for every U ∈ U ,
• an R-linear functor i∗ : A(U) −→ A(V ) for every i : V −→ U in U ,
• a natural isomorphism τi,j : (ij)∗ −→ j∗i∗ for each j : W −→ V , i : V −→

U .

These data have to satisfy a “cocycle condition” for three composable morphisms,
expressing that for an additional k : Z −→ W , the two canonical maps (ijk)∗ −→
k∗j∗i∗ are identical. Pseudofunctors from Uop

to 2Cat(R) constitute a 2-category
Pseudo(Uop

, 2Cat(R)) (endowed with “pseudo-natural transformations” and “mod-
ifications”).

To a pseudofunctor A corresponds a fibered U-R-category a with

Ob(a) =
∐
U

Ob(A(U))

and for AV ∈ A(V ), AW ∈ A(W ), f : W −→ V ,

af (AW , AV ) = A(W )(AW , f∗(AV )).

For AV ∈ A(V ) and f : W −→ V , a cartesian morphism in a is given by the identity
morphism f∗(AV ) −→ f∗(AV ) in A(W ). The correspondence can be made into a
2-equivalence Pseudo(Uop

, 2Cat(R)) −→ 2Fib(U , R).
In the sequel, we will use the term fibered category interchangeably for a fibered

U-R-category or for a corresponding pseudofunctor (depending on the choice of
cartesian morphisms).

If O : Uop −→ Alg(R) is a presheaf of R-algebras (i.e. an honest functor), then
O obviously defines a fibered category. The associated R-linear category o has
Ob(o) = U and

o(V, W ) =

{
O(V ) if V ⊂ W,

0 else.

2.3. Fibered categories, prestacks and stacks on a topological space. For
an introduction to fibered categories and stacks on a topological space we refer the
reader to [13]. In this section we recall some of the basic concepts.
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Let X be a topological space and let U ⊂ Open(X) be a full subcategory of the
category of open sets and inclusions. In this case a U-graded R-linear category is
“the same” as an R-linear category a with a(V, U) = 0 unless V ⊂ U .

As explained in the previous section, we will call a pseudofunctor F from U to
2Cat(R) an R-linear fibered category on U . For an inclusion i : V ⊂ U , we will often
use the notation i∗(F ) = F |V . We define the restriction F|U to U ∈ U to be the
fibered category on U/U with F|U (V ) = F(V ).

Two objects F, F ′ ∈ F(U) determine a presheaf HomF (F, F ′) on U/U with

HomF (F, F ′)(V ) = HomFV
(F |V , F ′|V ).

Suppose U is a basis of X. We denote the sheafification of the presheaf HomF (F, F ′)
by HomF (F, F ′). The fibered category F is called a prestack if the presheaves
HomF (F, F ′) are sheaves. If the categories F(U) are abelian, we likewise define
presheaves ExtF (F, F ′) and their sheafifications ExtF (F, F ′).

For a fibered category F and a covering Ui −→ U , there is an associated category
of “descent data” Des(Ui,F) and a functor F(U) −→ Des(Ui,F). To define a
descent datum, we consider V = {V ∈ U | ∃i V ⊂ Ui}. A descent datum consists of
an object FV ∈ F(V ) for every V ∈ V , together with isomorphisms FV |W ∼= FW for
every inclusion W ⊂ V in V . These isomorphisms have to satisfy a compatibility
condition for every two inclusions W ′ ⊂ W ⊂ V . The fibered category F is called
a stack if and only if, for every covering Ui −→ U , this functor is an equivalence of
categories.

If O is a sheaf of R-algebras on U , then O is naturally a prestack but not a stack.
This is why we will continue to work with prestacks rather than stacks. On the
level of module categories, this doesn’t make any difference (see Proposition 2.1).

Let F and G be R-linear fibered categories over X. A morphism of R-linear
fibered categories (a “pseudo-natural transformation”) φ : F −→ G consists of the
following data:

• an R-linear functor φU : F(U) −→ G(U) for every U ∈ U ,
• a natural isomorphism αi : φV i∗ −→ i∗φU for every i : V −→ U in U .

These data should satisfy a compatibility condition with respect to the τ ’s of §2.2.
The morphism φ is an equivalence of fibered categories (in the 2-categorical sense)

if every φU : F(U) −→ G(U) is an equivalence of categories. It will be called a weak
equivalence of fibered categories [13, Def. 2.3] if every φU is fully faithful and locally
surjective on objects; i.e. for every G ∈ G(U) there is a covering Ui −→ U and
objects Fi ∈ F(Ui) with φUi

(Fi) ∼= G|Ui
.

We will denote the 1-category of fibered categories and morphisms between them
by Fib and we will denote the full subcategories of prestacks and of stacks by
Prestack and Stack respectively. For a fibered category F , an associated prestack
ap(F) (resp. an associated stack as(F)) is by definition a reflection of F in Prestack
(resp. in Stack). Both reflections exist for a fibered category F (see [13]). If O is
a presheaf of rings on U , then ap(O) is its sheafification. If O is a sheaf of rings on
U , then as(O) is given by

(6) U �→ {locally free rank one OU -modules}.

2.4. Sheaves on an R-linear fibered category. Let U ⊂ Open(X) be a basis of
X. Our principal model of a stack of abelian categories is the stack Mod = Mod(R)
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of sheaves of R-modules on U . The stack Mod is defined as follows:

• Mod(U) is the category Mod(R|U ) of sheaves of R-modules on U/U ,
• for V ⊂ U , Mod(U) −→ Mod(V ) : F �−→ F |V is given by restriction, i.e.

F |V (W ) = F (W ),
• all the natural isomorphisms τ are identities.

We have Mod |U = Mod(R|U ).
Let A be an R-linear fibered category on U . A sheaf on A is a morphism of

fibered categories F : A −→ Mod . Sheaves on A constitute an abelian category
which we denote by Mod(A) = Fib(A,Mod). The stack Mod(A) = Fib(A,Mod)
of sheaves on A is defined as follows:

• Mod(A)(U) = Mod(A|U ) = Fib(A|U ,Mod |U ),
• for i : V −→ U , we have an obvious restriction functor i∗ : Mod(A|U ) −→

Mod(A|V ) and we have obvious τ ’s.

An object AU ∈ A(U) defines a sheaf Hom(−, AU ) : A|U −→ Mod |U : BV �−→
Hom(BV , AU |V ). We have a morphism of fibered categories

A −→ Mod(A) : AU �−→ Hom(−, AU ),

and we will often abusively denote Hom(−, AU ) simply by AU .

Proposition 2.1. Let A be a fibered category and let ap(A) and as(A) denote
the associated prestack and stack respectively. We have equivalences of categories
Mod(A) ∼= Mod(ap(A)) ∼= Mod(as(A)) and equivalences of stacks Mod(A) ∼=
Mod(ap(A)) ∼= Mod(as(A)).

Proof. Immediate from the definition of Mod(A) since Mod(R) is a stack. �

2.5. The stack of sheaves in terms of localizing subcategories. Let us first
fix some notation and terminology. Let S be a full subcategory in an arbitrary
abelian category C. The category S⊥ is by definition the full subcategory of C with
Ob(S⊥) = {C ∈ C |Hom(S, C) = 0 = Ext1(S, C)} whereas ⊥S has Ob(⊥S) =
{C ∈ C |Hom(C,S) = 0 = Ext1(C,S)}. Recall that S is called Serre if it is closed
under subquotients and extensions. In this case the quotient q : C −→ C/S exists.
S is called localizing if q has a right adjoint i. If this is the case, i is necessarily
fully faithful and yields an equivalence C/S ∼= S⊥. In a Grothendieck category C,
a Serre subcategory is localizing if and only if it is closed under coproducts.

Let U ⊂ Open(X) be a basis of X. We will now turn to some more specific
aspects of the stack Mod(A) and the abelian category Mod(A) over a fibered
category A on U . The situation is a copy of the situation for Mod(R) and Mod(R).
For V ∈ U , we have an inclusion j : U/V −→ U . Consider the restriction functor
j∗ : Mod(A) −→ Mod(A|V ), its fully faithful right adjoint j∗ : Mod(A|V ) −→
Mod(A) with

(j∗F )(AW )(W ′) = limU∈U,U⊂V ∩W ′F (AW |U )(U)

and its fully faithful exact left adjoint j! : Mod(A|V ) −→ Mod(A) for which
(j!F )(AW ) is the sheafification of (jp

! F )(AW ) with

(jp
! F )(AW )(W ′) =

{
F (AW |W ′)(W ′) if W ′ ⊂ V,

0 else.
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If we take A to be A|U on U/U , an inclusion j : V ⊂ U corresponds to j :
U/V −→ U/U and to functors j∗ : Mod(A|U ) −→ Mod(A|V ), j∗, j! : Mod(A|V ) −→
Mod(A|U ) as above.

In C = Mod(A) consider the subcategories

Z = Z(V ) = Ker(j∗),

S = S(V ) = j!(Mod(A|V )),

L = L(V ) = j∗(Mod(A|V )).

The situation can be summarized in the following way:

(1) S is a localizing Serre subcategory with S⊥ = Z,
(2) Z is a localizing Serre subcategory with Z⊥ = L,
(3) Zop

is a localizing Serre subcategory in Cop
with ⊥Z = S = {C | C(C,Z) =

0} in C,
(4) there is an equivalence of categories S ∼= L compatible with the localization

functors of (2) and (3),
(5) the localization functor C −→ L has an exact left adjoint L ∼= S ⊂ C.

By the following proposition, (3), (4) and (5) follow automatically from (1) and
(2).

Proposition 2.2. Let C be a cocomplete abelian category with subcategories Z, S,
L as in (1), (2) above. Then (3), (4) and (5) hold too.

Proof. Let us prove first that ⊥Z = S = {C | C(C,Z) = 0}. Obviously S ⊂
⊥(S⊥) = ⊥Z. Let a : C −→ Z be a localization functor with Ker(a) = S and
consider C with C(C,S⊥) = 0. There is an exact sequence 0 −→ S −→ C −→ aC
with S ∈ S. By assumption, C −→ aC is zero so C = S ∈ S. It now easily
follows from [14, Thm 4.5] that Zop

is localizing in Cop
. The quotient category

Cop
/Zop

is thus equivalent to (Zop
)⊥ in Cop

, and taking opposites we get that the
corresponding functor C −→ ⊥Z is equivalent to the quotient C −→ C/Z and to
C −→ Z⊥ = L. �

Next we need to say a word on compatibility (see for example [15, 3]). Consider
two localizing Serre subcategories SU and SV in an abelian category C. Put SU ∗
SV = {C ∈ C | ∃SU ∈ SU , SV ∈ SV , 0 −→ SU −→ C −→ SV −→ 0 }. SU and SV

are called compatible if SU ∗ SV = SV ∗ SU . In this event, this expression is the
smallest localizing Serre subcategory containing SU and SV . Let aU : C −→ S⊥

U

and aV : C −→ S⊥
V be the corresponding localization functors with right adjoint

inclusion functors iU , iV and qU = iUaU , qV = iV aV . We will use the following
incarnations of compatibility:

Proposition 2.3 ([3, 5]). The following are equivalent:

(1) SU and SV are compatible,
(2) for all SU ∈ SU we have aV (SU ) ∈ SU and for all SV ∈ SV we have

aU (SV ) ∈ SV ,
(3) qUqV = qV qU .

In this event:

(1) qUqV defines a localization with Ker(qUqV ) = SU ∗ SV (and (SU ∗ SV )⊥ =
S⊥

U ∩ S⊥
V ),
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(2) aV can be restricted to a functor aV |U : S⊥
U −→ (SU ∗ SV )⊥, which is the

localization functor left adjoint to inclusion

C
aV �� S⊥

V

S⊥
U aV |U

��

��

(SU ∗ SV )⊥,

��

(3) if Sop

U and Sop

V are localizing in Cop
, then they are compatible.

Suppose U is closed under intersections. In Mod(A), consider the localizing Serre
subcategories Z(U),Z(V ) and Z(U ∩ V ) for open subsets U, V ∈ U . We are in the
situation that Z(U) and Z(V ) are compatible with Z(U) ∗Z(V ) = Z(U ∩V ). The
square above takes the familiar form

Mod(A)
i∗V �� Mod(A|V )

Mod(A|U )

iU,∗

��

i∗U,U∩V

�� Mod(A|U∩V ).

iV,U∩V,∗

��

Similarly, the square corresponding to the compatibility of Z(U)
op

and Z(V )
op

takes the form

Mod(A)
i∗V �� Mod(A|V )

Mod(A|U )

iU,!

��

i∗U,U∩V

�� Mod(A|U∩V ).

iV,U∩V,!

��

We end this section with two definitions.

Definition 2.4. Let U ⊂ Open(X) be a full subcategory which is closed under
intersections and let C be a fibered category on U .

(1) C is called a fibered category of localizations if
• the categories C(U) are Grothendieck,
• for every U ⊂ W , ZW (U) = Ker(j∗W,U ) is a localizing Serre subcate-

gory in C(W ),
• for every U, V ⊂ W , ZW (U) and ZW (V ) are compatible and
ZW (U ∩ V ) = ZW (U) ∗ ZW (V ).

(2) A fibered category of localizations C is called complemented if for every U ⊂
W there is a localizing Serre subcategory SW (U) with SW (U)⊥ = ZW (U).

For a fibered category of localizations C and i : U ⊂ W we denote the right
adjoint of the restriction functor i∗W,U : C(W ) −→ C(U) by iW,U,∗ : C(U) −→ C(W ).
If C is complemented, we denote the exact left adjoint of i∗W,U by iW,U,! : C(U) −→
C(W ).

2.6. Some notions of flatness. Let U be an arbitrary base category and let a be
an R-linear U-graded category. We say that a is flat if all occurring Hom-modules
af (A, A′) are flat. If A is an R-linear fibered category on U , then A is flat as a
graded category if and only if all the modules A(U)(A, A′) are flat.
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Let U be a basis of X and let A be a prestack on U . We say that A is locally
flat if for all A, A′ ∈ A(U) the sheaf Hom(A, A′) is flat as an object of the R-linear
abelian category Mod(R|U ). Obviously if A is flat, then A is locally flat. Let C be
an R-linear fibered category consisting of abelian categories C(U). We say that C
is flat abelian if all the categories C(U) are flat abelian categories.

Proposition 2.5. Let A be an R-linear prestack on a basis U of X. The following
are equivalent:

(1) A is a locally flat prestack,
(2) for every A ∈ A(U), Hom(−, A) is a flat object of Mod(A|U ),
(3) Mod(A) is a flat abelian stack,
(4) Mod(A) is a flat abelian category.

Proof. For F ∈ Mod(A|U ) or F ∈ Mod(A), X ∈ mod(R), A′ ∈ A(V ) we have
(X ⊗R F )(A′) = X ⊗R F (A′) where the right hand side is computed in Mod(V ).
Consequently, (X⊗RHom(−, A))(A′) = X⊗RHom(A′, A|V ) computed in Mod(V ).
This proves the equivalence of (1) and (2). To prove the equivalence of (2), (3) and
(4), we first note that HomR(X, F )(A′)(W ) = HomR(X, F (A′)(W )) because of the
way limits are computed in Mod(V ). Consequently, F is coflat if and only if every
F (A′)(W ) is coflat. Now F (A′)(W ) = Mod(A|W )(Hom(−, A′|W ), F |W ), so

(7) Mod(R)(X, F (A′)(W )) = Mod(A|W )(X ⊗R Hom(−, A′|W ), F |W ).

Suppose (2) holds and F is injective in Mod(A). Then because of the existence
of j! : Mod(A|W ) −→ Mod(A), F |W is injective in Mod(A|W ), so coflatness of
F follows from flatness of Hom(−, A′|W ) and we arrive at (4). Now if Mod(A)
is flat, then all its localizations Mod(AW ) are flat as well and we arrive at
(3). To see that (3) implies (2), consider A ∈ A(U). It suffices to prove that
Mod(A|U )(X ⊗ Hom(−, A), E) is exact in X for every injective E ∈ Mod(A|U ).
Since E is coflat by assumption, the result follows once again by the equation (1)
above. �

2.7. The conditions (G), (F) and (FF) for morphisms of fibered cate-
gories. Covering systems were introduced in [9] as generalisations of the “pre-
topologies” of [1]. Let C be an arbitrary category. A covering system T on C is given
by specifying for every C in C a collection T (C) of coverings of C. A covering is by
definition a collection of maps Ci −→ C in C. These coverings have to satisfy the
following transitivity property: if (Ci −→ C)i is a covering of C and (Cij −→ Ci)j

are coverings of Ci, then the collection of compositions (Cij −→ Ci −→ C)ij is
a covering of C. Also, every single identity morphism 1C : C −→ C has to be
a covering. This last requirement was not included in the definition of [9], but is
added here for convenience. Covering systems can be used both on additive and on
nonadditive categories, and in fact we will use both in this paper. If the underlying
category C is additive, the notions of Grothendieck topology, site, sheaves, etc. are
all (implicitly) replaced by their additive versions.

A covering system T on a category defines a Grothendieck topology as described
in [9, Theorem 4.2]; i.e. for a subfunctor of C(−, C) to be a covering, every pullback
of the subfunctor along a map D −→ C has to contain a T -covering of D. We
will say that a covering system is a topology if the collection of all the subfunctors
generated by T -coverings is a Grothendieck topology. We will say that two covering
systems T1 and T2 are equivalent if they define the same Grothendieck topology. A
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category with a covering system or a Grothendieck topology (U , T ) will be called
a site. The category Sh(U , T ) of sheaves over the site is by definition the category
of sheaves for the Grothendieck topology associated to the covering system.

Covering systems can easily be induced along a functor in both directions. If
u : U −→ V is a functor, a covering system T on V yields an induced covering
system Tu on U : a collection (Ui −→ U) is a covering for Tu if and only if the
collection (u(Ui) −→ u(U)) is a covering for T . Conversely, a covering system T
on U yields an image covering system u(T ) on V containing precisely the images
(u(Ui) −→ u(U)) of T -coverings (Ui −→ U).

Of course, prestacks, stacks and sheaves over them can be defined with respect
to a base site (U , T ) instead of a basis U of a topological space (which we implicitly
endow with the natural covering system inherited from Open(X), for which Ui −→
U is covering if and only if

⋃
i Ui = U). We will not consider this more general

setting in this paper when it comes to our base category U , but we will now describe
how we can “lift” the natural covering system of U to any fibered category over U .
In this way we naturally encounter sites which are no longer bases of topological
spaces.

Suppose T is a covering system on U and A is a fibered U-graded category
(with F : Ob(A) −→ Ob(U)). There is an induced covering system (denoted by
TA or simply T ) on the associated additive category a. A covering of an object A
is by definition a collection of cartesian morphisms ai ∈ aui

(Ai, A) for which the
collection ui : F (Ai) −→ F (A) is a T -covering. It is readily seen from the definition
of cartesian morphisms that if T is a topology on U , then TA is a topology on a.
More generally, different covering systems TU on the fibers A(U) can be glued
together to a covering system on a in a similar way, but we will not need this more
general construction for our purposes.

The conditions (G), (F) and (FF) were introduced in [9] for a morphism between
additive sites u : (u, T ) −→ (v,Z). In [9], the covering system T is always induced
by Z. We will drop this assumption here. We start by giving a definition for
presheaves. Consider a morphism η : P −→ P ′ between presheaves on (u, T ). Let
a : Mod(u) −→ Sh(u, T ) be sheafification.

(F) We say that η satisfies (F) if a(η) is epi, i.e. if the following holds: for every
y ∈ P ′(U), there is a covering Ui −→ U such that y|Ui

is in the image of
ηUi

: P (Ui) −→ P ′(Ui).
(FF) We say that η satisfies (FF) if a(η) is mono, i.e. if the following holds: for

every x ∈ P (U) with ηU (x) = 0, there is a covering Ui −→ U with x|Ui
= 0.

We will now formulate the conditions for u : (u, T ) −→ (v,Z):

(G) We say that u satisfies (G) if for every V ∈ v, there is a Z-covering
u(Ui) −→ V .

(F),(FF) We say that u satisfies (F) (resp. (FF)) if for every U ∈ u, the morphism of
presheaves u(−, U) −→ v(u(−), u(U)) on (u, T ) satisfies (F) (resp. (FF)).

If u : u −→ C is an additive functor into a Grothendieck category, we say that u
satisfies (G), (F) and (FF) if u : (u, Tu) −→ (C, T ) does, where T is the covering
system of all epimorphic families.

The following was shown in [9]:

Theorem 2.6. Consider an additive functor u : u −→ C from a small pre-additive
category to a Grothendieck category. Let T be the covering system on C consisting
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of all epimorphic families of morphisms. The following are equivalent:
(1) u satisfies the conditions (G), (F) and (FF);
(2) Tu is a topology on u yielding an equivalence of categories Sh(u, Tu) ∼= C.

Next we will give an interpretation of conditions (G), (F) and (FF) for a mor-
phism of fibered categories on a fixed site. Consider a morphism of R-linear fibered
categories p : B −→ A on a site (U , T ), and let a and b be the associated additive
categories of A and B.

Proposition 2.7. The following are equivalent:
(1) the morphism p : (b, TB) −→ (a, TA) satisfies (F) (resp. (FF));
(2) for every B, B′ ∈ B(U), the morphism of presheaves HomB(B, B′) −→

HomA(p(B), p(B′)) on (U|U , T |U ) satisfies (F) (resp. (FF)). �
If the equivalent conditions of Proposition 2.7 hold, we will say that p : B −→ A

satisfies (F) (resp (FF)) (with respect to T on U).

Proposition 2.8. The following are equivalent:
(1) the morphism p : (b, TB) −→ (a, TA) satisfies (G);
(2) the morphism p is locally surjective. �

Proposition 2.9. If p : B −→ A satisfies (G), (F) and (FF), then the associated
morphism between stacks as(p) : as(B) −→ as(A) is an equivalence. If A is a
prestack, the following are equivalent:

(1) p : B −→ A satisfies (G), (F) and (FF);
(2) ap(p) : ap(B) −→ A is a weak equivalence;
(3) as(p) : as(B) −→ as(A) is an equivalence. �

We end this subsection with a notion which will be used in the next subsection
2.8. We say that p locally reflects isomorphisms if for every morphism b : B −→
B′ ∈ B(U) with p(b) an isomorphism in A(U), there is a covering Ui −→ U with
b|Ui

an isomorphism for every i.

Proposition 2.10. If p : B −→ A satisfies (F) and (FF), then p locally reflects
isomorphisms.

Proof. Consider b : B −→ B′ ∈ B(U) with p(b) an isomorphism in A(U). Let
a : p(B′) −→ p(B) be an inverse isomorphism to p(b). By (F) there is a covering
V −→ U on which we have morphisms cV : B′|V −→ B|V for which p(b|V ) and
p(cV ) are inverse isomorphisms. Consequently, by (FF), there are further coverings
W −→ V on which b|V |W and cV |W are inverse isomorphisms. �

2.8. Algebroid fibered categories. Algebroids and algebroid fibered categories
were introduced by Kontsevich in [6].

Definition 2.11. An R-linear category a is called an algebroid if it is nonempty
and all its objects are isomorphic. An R-linear fibered category A on a site (U , T )
is called algebroid (or an R-algebroid fibered category) if the following hold:

(1) For U ∈ U , there is a covering Ui −→ U with A(Ui) �= ∅.
(2) For A, A′ ∈ A(U), there is a covering Ui −→ U with A|Ui

∼= A′|Ui
.

The fibered category associated to a presheaf O of R-algebras is obviously al-
gebroid, all the one-object categories O(U) being algebroid. One can consider an
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intermediate notion between presheaves and algebroid fibered categories, which
involves the 2-category 2Alg(R) of R-algebras. This 2-category is the “2-full” sub-
category of 2Alg(R) with as objects (0-cells) R-algebras (considered as one-object
categories). Explicitly, a 1-cell between R-algebras is just an R-algebra morphism,
and a 2-cell η : f −→ g between 1-cells f, g : A −→ B is an element η ∈ B such
that for all a ∈ A we have g(a)η = ηf(a).

Definition 2.12. A twisted presheaf of R-algebras on a base category U is a pseudo-
functor

O : U −→ 2Alg(R).

Explicitly, a twisted presheaf O consists of R-algebras O(U) for U ∈ U , restric-
tion morphisms i∗ : O(U) −→ O(V ) for i : V −→ U , elements τi,j ∈ O(W ) for
j : W −→ V , satisfying the following “cocycle condition” for k : Z −→ W :

k∗(τi,j)τij,k = τj,kτi,jk.

Proposition 2.13. Suppose A is a fibered U-R-category such that all the categories
A(U) for U ∈ U are algebroids. There exists a twisted presheaf of R-algebras O on
U and an equivalence of fibered categories O ∼= A.

Proof. Consider A as a graded category. For every U ∈ U , pick one object AU ∈
A(U) and let O be the full graded subcategory of A spanned by the objects AU . By
composing cartesian morphisms with isomorphisms, O is readily seen to be fibered
too, and O ∼= A. �

The next few propositions give some relations between algebroid fibered cate-
gories and the conditions (G), (F) and (FF) of the previous subsection 2.7 for mor-
phisms between them. They will be used in the main subsection 3.4 of the second
section in the context of deformations B −→ A of fibered categories (Proposition
3.5, Proposition 3.18).

Proposition 2.14. Consider a morphism of R-linear fibered categories p : B −→ A
on a site (U , T ) which satisfies (G) and (F) and locally reflects isomorphisms. If
A is algebroid, then so is B.

Proof. For U ∈ U , let Ui −→ U be a cover with A(Ui) �= ∅. Choose objects
Ai ∈ A(Ui) and let Uij −→ Ui be covers on which Ai|Uij

∼= p(Bij). In particular,
the cover Uij −→ U is such that B(Uij) �= ∅. Now consider B, B′ ∈ B(U). For
p(B), p(B′) ∈ A(U), there exists a cover Ui −→ U with p(B)|Ui

∼= p(B′)|Ui
. Conse-

quently, we have isomorphisms ai : p(B|Ui
) −→ p(B′|Ui

). By (F), there are covers
Uij −→ Ui with ai|Uij

∼= p(bij) for some bij : B|Uij
−→ B′|Uij

. By assumption, the
maps bij are isomorphisms on some further covering. �
Proposition 2.15. Consider a morphism of R-linear fibered categories p : B −→ A
on a site (U , T ) which satisfies (G), (F) and (FF). If A is algebroid, then so is B.

Proof. This is immediate from Propositions 2.14 and 2.10. �
Proposition 2.16. Consider a morphism p : B −→ A of fibered categories. If B is
algebroid, then A is algebroid if and only if p satisfies (G).

Proof. Suppose A is algebroid. Consider A ∈ A(U). Take a covering Ui −→ U
such that B(Ui) �= ∅. Choose Bi ∈ B(Ui). Take coverings Uij −→ Ui on which
p(Bi)|Uij

∼= AUij
. Suppose p satisfies (G). Take a covering Ui −→ U such that
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B(Ui) �= ∅. Then certainly A(Ui) �= ∅. Take A, A′ ∈ A(U). Take a covering on
which both A|V ∼= p(B) and A′|V ∼= p(B′) and take a further cover on which B and
B′ become isomorphic. �

2.9. Characterization of the stack of sheaves on A. Let A be a fibered cat-
egory on a topological space X. In this section we characterize the stack Mod(A)
in terms of the inclusion A −→ Mod(A), using additive sheaf categories. In the
second chapter, this characterization (which is formulated in Theorem 2.22) will be
lifted under deformation.

We start this section with a proof of the standard characterization of module
categories among Grothendiek categories. This proof will be our inspiration for
Theorem 2.22.

Theorem 2.17. Consider an additive functor a −→ C from a small pre-additive
category a to a Grothendieck category C. Let Tepi be the covering system on a

induced by the covering system of all epimorphic families on C, and let Ttriv be
the trivial covering system on a, for which the only coverings are identities. The
following are equivalent:

(1) a −→ C yields an equivalence Mod(a) ∼= C,
(2) (a) a −→ C satisfies (G), (F) and (FF),

(b) there is an equivalence of covering systems Tepi
∼= Ttriv,

(3) a −→ C is fully faithful and the (images of) objects of a form a set of
finitely presented projective generators in C.

Proof. The equivalence of (1) and (2) immediately follows from Proposition 2.6
and the implication (1) implies (3) is obvious. To prove that (3) implies (2), we
consider an arbitrary covering fi : Ai −→ A for Tepi. By definition, we have a
C-epimorphism

∐
i Ai −→ A. By (2), this epimorphism splits through a finite

sub-coproduct A −→
∐

i∈J Ai. Consequently, since a −→ C is fully faithful, we
get morphisms gi : A −→ Ai for i ∈ J with

∑
i∈J figi = 1A. This finishes the

proof. �

As a first step, we describe Mod(A) as an additive sheaf category:

Proposition 2.18. Let A be a fibered category on a basis U of X, let a be the
additive category of A and let TA be the topology on a induced by the standard
topology T on U (see §2.7). Then there is an equivalence of categories

Mod(A) ∼= Sh(a, TA).

Proof. We can easily give functors ϕ : Mod(A) −→ Sh(a, TA) and ψ : Sh(a, TA) −→
Mod(A) constituting an equivalence. Let F : A −→ Mod(U) be a sheaf on A. Then
we define ϕF (AU) = F (AU )(U). For a morphism AW −→ AV |Vi

from AW to AV

in a, we get a morphism F (A)(V ) −→ F (A)(W ) ∼= F (A|W )(W ) −→ F (AW )(W )
as required. Conversely, for an additive sheaf G : a −→ Ab, we put ψG(AV )(W ) =
G(AV |W ). A map AV −→ A′

V in A(V ) yields morphisms G(AV |W ) −→ G(A′
V |W )

as required. It is easily seen that by the definition of TA, sheaves are mapped to
sheaves by both ϕ and ψ, and that they are inverse equivalences. �

Let C be a complemented stack of localizations (see Definition 2.4) on U =
Open(X) and consider a morphism A −→ C. Let aU be the additive category
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associated to the fibered graded category A|U (see §2.2). For every U ∈ U , there is
an induced

aU −→ C(U) : AV �−→ jU,V,!AV

with the following prescription for morphisms if W ⊂ V :

aU (AW , AV ) = A(W )(AW , AV |W ) −→ C(W )(AW , AV |W ) ∼= C(U)(j!AW , j!AV ).

The category aU naturally carries two topologies:
(1) the topology TU = TA|U which is induced by the standard covering system

T on Open(X);
(2) the topology Tepi,U induced by the inclusion aU −→ C(U), where C(U) is

endowed with the covering system Tepi of all epimorphic families.

Proposition 2.19. We have an inclusion of topologies on aU :

TU ⊂ Tepi,U .

Proof. Consider a TV -covering of an object A ∈ A(V ) for V ⊂ U , i.e. a collection
of C(Vi)-isomorphisms Ai −→ A|Vi

for a covering Vi −→ V . To show that these
morphisms are coverings for Tepi,U , it suffices to show that their images jV,Vi!Ai −→
A are epimorphic in C(V ). Suppose all compositions jV,Vi!Ai −→ A −→ M are zero
for A −→ M in C(V ). Equivalently, all the restrictions A|Vi

−→ M |Vi
are zero;

hence it follows that A −→ M is zero since C is a stack. �
The equivalence of (1) and (2) in Theorem 2.22 immediately follows from Propo-

sition 2.18 and Theorem 2.6, and in fact this part of the theorem is sufficient for
our purpose, namely for the proof of Theorem 3.14 in the second chapter. However,
it is possible to make the analogy with Theorem 2.17 complete by defining local
versions of projective and finitely presented objects in a stack. These notions will
be used again later on in §3.4. The proof of Theorem 2.22 is essentially a local
version of the proof of Theorem 2.17, but we include it for completeness.

Definition 2.20. Let A ∈ C(U) be an object of a stack of (R-linear) abelian
categories C.

(1) We say that A is locally projective if Ext1(A,−) : C(U) −→ Mod(U) is
zero.

(2) We say that A is locally finitely presented if Hom(A,−) : C(U) −→
Mod(U) preserves filtered colimits.

Remark 2.21. Let A ∈ C(U) be as above.
(1) A is locally projective if and only if for every C ∈ C(U), 0 −→ ExtC(A, C)

satisfies (F). In other words, if every epimorphism f : B|V −→ A|V in
C(V ) (with B ∈ C(U)) is locally split, i.e. there is a covering Vi −→ V
such that for every i there is a splitting g : A|Vi

−→ B|Vi
with f |Vi

g = 1.
(2) A is locally finitely presented if and only if, for every filtered colimit

colimiBi in C(U), colimiHomC(A, Bi) −→ HomC(A, colimiBi) satisfies (F)
and (FF). In other words,
(a) if f : A|V −→ colimi(Bi)|V is a morphism in C(V ), then there is

a covering Vj −→ V such that for every j, f |Vj
factors through

A|Vj
−→ (Bi)|Vj

for some i, and
(b) if f : A|V −→ (Bi)|V is such that the composition A|V −→

colimi(Bi)|V is zero, then there is a covering Vj −→ V with f |Vj
= 0

for every j.
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Theorem 2.22. Let C be a complemented stack of localizations on X, A a fibered
category on X, and A −→ C a morphism of fibered categories. The following are
equivalent:

(1) A −→ C yields an equivalence of stacks Mod(A) ∼= C;
(2) (a) the maps aU −→ C(U) statisfy (G), (F) and (FF),

(b) there are equivalences of topologies Tepi,U
∼= TU ;

(3) (a) the maps (aU , TU ) −→ (C(U), Tepi) statisfy (G), (F) and (FF),
(b) the (images of) objects of A are locally finitely presented and locally

projective in C.

Remark 2.23. Note that in Theorem 2.17(3), a −→ C is fully faithful if and only if
(a, Ttriv) −→ (C, Tepi) satisfies (F) and (FF).

Remark 2.24. Note that even if A −→ C is a fully faithful embedding (in the sense
that all the functors A(U) −→ C(U) are), condition (FF) in (2)(a) is automatically
fulfilled, but condition (F) is not.

Proof. The equivalence of (1) and (2) immediately follows from Proposition 2.18
and Theorem 2.6. In the situation of (1), (3)(a) holds because (2) holds. For
(2)(b) we are to show that Ext1Mod(A)(HomA(−, A), M) is a zero presheaf for
A ∈ A(U), M ∈ Mod(A|U ). Consider an exact sequence 0 −→ M |V −→ E −→
HomA(−, A|V ) −→ 0 in Mod(A|V ). Since E(A|V ) −→ HomA(A|V , A|V ) is an epi-
morphism of sheaves, there is a covering Vi −→ V on which 1 : A|Vi

−→ A|Vi

is in the image of E(A|Vi
). This allows us to define a splitting of E|Vi

−→
HomA(−, A|Vi

). Next we are to show that if colimiMi is a filtered colimit in
Mod(A|U ), then the canonical map from colimiHomMod(A|V )(Hom(−, A|V ), Mi|V )
to HomMod(A|V )(Hom(−, A|V ), colimiMi|V ) satisfies (F), (FF). This map can be
rewritten as colimi(Mi(A)(V )) −→ (colimiMi(A))(V ). Since this map corresponds
to sheafification of the presheaf colimi(Mi(A)), this finishes the proof of (2)(b).
Finally we show that (3) implies (2). By Proposition 2.19, it suffices to show
that for a covering Ai −→ A|Vi

of A ∈ A(V ) for Tepi,U , the generated subfunc-
tor contains a covering for TU . So we suppose that the maps jV,Vi

Ai −→ A are
epimorphic in C(V ), i.e., we have an epimorphism

∐
i jV,Vi!Ai −→ A. For an

open subset W ⊂ Vi, composing Ai −→ A|Vi
with the canonical Ai|W −→ Ai|W

yields the aU -morphism from Ai|W to A determined by Ai|W −→ A|Vi
|W ∼= A|W .

Hence it suffices to find for every Vi a covering W −→ Vi for which the maps
Ai|W −→ A|Vi

|W are isomorphisms. By (2), there is a covering Wk −→ V on
which the epimorphism

∐
i jV,Vi!Ai −→ A splits, and on which the splitting is

through a finite subcoproduct
∐

i∈Jk
(jV,Vi!Ai)|Wk

. In other words, for every k and
i ∈ Jk, for the map pki : jWk,Vi∩Wk!Ai|Vi∩Wk

−→ A|Wk
there is an ski : A|Wk

−→
jWk,Vi∩Wk!Ai|Vi∩Wk

such that
∑

i∈Jk
pkiski = 1. The map pki is the image in C(Wk)

of p̄ki : Ai|Vi∩Wk
−→ A|Vi∩Wk

, which is a map in the generated subfunctor. The
maps ski are not in the image of aWk

−→ C(Wk), but by (1)(F), there exist cov-
erings Wkl −→ Wk for which the canonical skl : jWk,Wkl!A|Wkl

−→ A|Wk
are such

that skiskl is in the image for every i ∈ Jk. Suppose skiskl is the image of s̄kil. Then
for every l,

∑
i∈Jk

p̄kis̄kil is mapped onto skl. But skl is by definition the image of
the canonical s̄kl : A|Wkl

−→ A|Wkl
. Hence by (1)(FF), there is a further covering

Wklm −→ Wkl such that the canonical morphism s̄klm : A|Wklm
−→ A|Wklm

can
be written as

∑
i∈Jk

p̄kis̄kils̄klm; hence s̄klm is in the subfunctor generated by the
original Ai −→ A|Vi

, as required. �
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3. Deformations of ringed spaces

Throughout, let S −→ R be a surjective ring map (between commutative, co-
herent rings) with nilpotent kernel I (we may and will assume that I2 = 0).

The main aim of this chapter is to show for a ringed space (X,O) how we can
describe the abelian deformations of the category Mod(O) of sheaves of modules
over O in terms of a certain type of deformation of O. To do so, we will have
to consider O no longer as a sheaf of algebras but as an algebroid prestack of
linear categories on X. We will consider this prestack O as sitting inside the stack
Mod(O) of sheaves of modules over O, which has the category Mod(OU ) of sheaves
of modules over OU as a section on U . In §3.4, Theorem 3.14, for appropriate
notions of deformations, we obtain equivalences between

• deformations of the prestack O,
• deformations of the stack Mod(O),
• deformations of the abelian category Mod(O).

In §3.1 and §3.2 we define what we mean by these different types of deformations,
and we prove some preliminary results. Theorem 3.14 is based upon a technical
result which allows us to “lift” the conditions (G), (F) and (FF) of §2.7 under
deformation. This is explained in §3.3. In the last two subsections (§3.5 and §3.6)
we analyze what happens if (X,O) is a quasi-compact, separated scheme. This
allows us to prove that there is an equivalence between

• deformations of the abelian category Mod(X),
• deformations of the abelian category Qch(X).

The parallel result for Hochschild cohomology has been demonstrated in [12].

3.1. Linear deformations of fibered categories. In §2.2 we explained that
there are two ways to think of a fibered category. We will now show that there are
obvious notions of deformations in both cases and that these notions are equivalent.

Let U be an arbitrary base category and let a be a U-graded R-linear category.
An S-deformation of a is a U-graded S-linear category b with an equivalence R⊗S

b −→ a. Here R ⊗S b is obtained by simply tensoring all modules with R. Note
that for an ordinary R-linear category (which is naturally graded over the category
Ua with Ob(Ua) = Ob(a) and Ua(A, A′) = {∗} for all A, A′ ∈ a) this yields the
definition of a deformation of linear categories as in [11]. We immediately get the
following.

Proposition 3.1. Suppose a is a U-graded R-linear category over a poset U , and
denote by the same symbol a the associated R-linear category. There is an equiva-
lence between

(1) flat deformations of a as a U-graded category,
(2) flat deformations of a as a linear category.

Proof. The associated R-linear category a has a(A, A′) = a≤(A, A′) if F (A) ≤
F (A′) and a(A, A′) = 0 otherwise. The result follows since the zero modules nec-
essarily deform to zero. �

Proposition 3.2. Let b −→ a be a flat deformation of graded categories. If a is
fibered, then so is b.
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Proof. Consider f : V −→ U in U and B ∈ b(U). Take a cartesian morphism
a : A −→ R ⊗S B in af (A, R ⊗S B) and let ā : Ā −→ B be a lift to b. Consider
C ∈ b(W ) and g : W −→ V . We have a commutative diagram

bg(C, Ā)

��

ā− �� bfg(C, B)

��
ag(R ⊗S C, A)

a−
�� afg(R ⊗S C, R ⊗S B)

in which a− = R⊗S (ā−). By assumption, a− is an isomorphism, and consequently,
by flatness and nilpotency, ā− is too. �

Let A be an R-linear fibered category on U , viewed as a pseudofunctor. A linear
S-deformation of A is an S-linear fibered category B on U with an equivalence
R ⊗S B −→ A. Here R ⊗S B is obtained by tensoring every B(U) with R and
inducing the restriction functors. The following easily follows from Proposition 3.2.

Proposition 3.3. Suppose A is a fibered category over U . There is an equivalence
between

(1) flat deformations of A as a graded category,
(2) flat deformations of A as a fibered category. �

Let O be a twisted presheaf of R-algebras on U . An S-deformation of O is a
twisted presheaf P of S-algebras on U with an equivalence R ⊗S P −→ O. Here
R ⊗S P is obtained by tensoring every P(U) with R and inducing the restriction
functors.

Proposition 3.4. Let B −→ A be a flat deformation of fibered categories. If A(U)
is an algebroid, then so is B(U). Consequently, for a twisted presheaf of R-algebras
O on U , there is an equivalence between

(1) flat deformations of O as a twisted presheaf,
(2) flat deformations of O as a fibered category,
(3) flat deformations of O as a graded category.

Proof. By nilpotency, an isomorphism in A(U) can be lifted to an isomorphism in
B(U). �

Let U be a basis of X. We will now introduce a different notion of deformation
for a fibered category A, which will be the correct one to obtain an equivalence with
abelian deformations of Mod(A). By Proposition 2.1, changing A to ap(A) or as(A)
doesn’t change the stack Mod(A). This suggests that in order to get an equivalence
with deformations of Mod(A), we have to deform A “up to stackification”. Since
the “pointwise” functor

R ⊗S − : Fib −→ Fib : B �−→ R ⊗S B
with (R ⊗S B)(U) = R ⊗S B(U) preserves neither prestacks nor stacks, we look at

Stack −→ Stack : B �−→ as(R ⊗S B)

instead. For an R-linear stack A, a linear stack S-deformation of A is by definition
an S-linear stack B together with an equivalence as(R⊗S B) ∼= A. For an arbitrary
fibered category A, we define a weak linear deformation of A to be a stack defor-
mation of as(A). Since we are most interested in prestacks A (a sheaf of algebras
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O naturally defining a prestack but not a stack), we will elaborate upon this a little
further for prestacks. Let Σ denote the class of weak equivalences (§2.3) in the
category Prestack. Then Σ contains precisely the morphisms inverted by the reflec-
tion as : Prestack −→ Stack. Consequently, Stack ∼= Prestack[Σ−1]. For prestacks
A and B, every morphism from A to B in Prestack[Σ−1] can be represented by a
“fraction” consisting of a morphism A −→ C to a prestack C and a weak equiva-
lence B −→ C. If both parts of the fraction are weak equivalences, we will call the
resulting morphism A −→ C a stack equivalence. Let A be an R-linear prestack on
U . A weak linear S-deformation of A can be represented by an S-linear prestack
B with an equivalence as(R ⊗S as(B)) ∼= as(A). Since R ⊗S − preserves weak
equivalences, this corresponds to an S-linear prestack B with a stack equivalence
ap(R⊗S B) ∼= A. Two weak deformations B and B′ are equivalent if there is a stack
equivalence B −→ B′ inducing the stack equivalence ap(R ⊗S B) −→ ap(R ⊗S B′).
We will be most concerned with weak deformations B of A where the stack equiva-
lence ap(R⊗S B) −→ A is in fact a weak equivalence. Equivalent characterizations
of this situation are given in Proposition 2.9.

Proposition 3.5. Suppose we are in one of the following cases:

(1) B −→ A is a linear deformation of fibered categories,
(2) B −→ A is a weak linear deformation of prestacks.

If A is algebroid, then so is B.

Proof. The first case follows from Proposition 2.14. For the second case we have to
consider morphisms R ⊗S B −→ ap(R ⊗S B) −→ C ←− A. Then C is algebroid by
Proposition 2.16, and R ⊗S B by Proposition 2.15. �

3.2. Abelian deformations of fibered categories of localizations. Let C be
an R-linear fibered category of abelian categories. An abelian S-deformation of C is
an S-linear fibered category of abelian categories D with an equivalence of fibered
categories C −→ DR. Here DR is the R-linear fibered category with DR(U) =
D(U)R and the induced restriction functors, and D(U)R is the category of R-
objects in D(U), i.e. those objects annihilated by the kernel I of S −→ R. For
U = {∗, 1∗}, this reduces to the definition of a deformation of abelian categories of
[11].

Let U ⊂ Open(X) be a base category which is closed under intersections and let C
be an R-linear fibered category of localizations on U . A localization S-deformation
of C is an abelian S-deformation which is again a fibered category of localizations.
If U is a basis of X and C is a stack on U , we are interested in deformations
which are again stacks. We will call them stack deformations, or localization stack
deformations if they are at the same time localization deformations. The remainder
of this section contains preliminary results about the liftability under deformation
of several features of fibered categories. They will be used in §3.4 and further on.
The following proposition shows that if X ∈ U , the localization deformations of C
can all be induced from deformations of C(X).

Proposition 3.6. Let C be an R-linear fibered category of localizations on U and
suppose X ∈ U . There is an equivalence between

(1) flat abelian deformations of C(X),
(2) flat localization deformations of C.
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Proof. Consider a flat abelian deformation C(X) −→ D(X). By [11], there is a (up
to isomorphism) unique localization j∗D : D(X) −→ D(U) “lifting” the localization
j∗C : C(X) −→ C(U), and this localization is obtained by lifting Ker(j∗C) to its
generated Serre subcategory in D(X). So it remains to show that the remaining
conditions in Definition 2.4 are fulfilled. This follows from Proposition 3.8. �

Proposition 3.7. Let C −→ D be a flat localization deformation. If C is comple-
mented, then so is D.

Proof. For j : V ⊂ U , consider j∗D : D(U) −→ D(V ). The kernel Z ′ of j∗D is
the Serre subcategory generated by Z = Ker(C(U) −→ C(V )) in D. Now let S
be the localizing Serre subcategory in C with S⊥ = Z and let S ′ = 〈S〉D be the
generated Serre subcategory in D. By Proposition 3.8(1), S ′⊥ = Z ′, which finishes
the proof. �

Proposition 3.8. Consider a flat deformation of abelian categories j : C −→ D
and localizing Serre subcategories S ′ and Z ′ in D with S = S ′ ∩ C, Z = Z ′ ∩ C.

(1) If S⊥ = Z, then S ′⊥ = Z ′.
(2) If S and Z are compatible, then so are S ′ and Z ′ and (S ′∗Z ′)∩C = S∗Z.

Proof. (1) Suppose S⊥ = Z. We start with the inclusion Z ′ ⊂ S ′⊥. Since S ′⊥

is closed under extensions, it suffices to note that Z = S⊥ ⊂ S ′⊥ is the induced
deformation of S⊥. For the other inclusion, consider X ∈ S ′⊥. By [8, Prop.
4.2.1] and symmetry, Z ′ = {C ∈ D |HomS(R, C) ∈ Z}, so we are to show that
HomS(R, X) ∈ Z = S⊥. This follows from the way S⊥ ⊂ S ′⊥ is induced. (2)
Suppose S and Z are compatible. By Proposition 2.3 and symmetry, to show that
S ′ and Z ′ are compatible it suffices to show that qZ′(S ′) ⊂ S ′ for qZ = iZ′aZ′

associated to Z ′. So consider X ∈ S ′. It suffices that HomS(R, qZ′(X)) ∈ S. We
claim that HomS(R, qZ′(X)) = qZ(HomS(R, X)), which is in S by assumption. We
compute that j
HomS(R, qZ′(X)) = qZ′(jHomS(R, X)) = jqZ(HomS(R, X)) where we have used
that qZ′ is left exact. Now it remains to show that (S ′ ∗ Z ′) ∩ C = S ∗ Z. It is
equivalent to show that S ′ ∗ Z ′ is the smallest Serre subcategory containing S ∗ T .
Since any Serre subcategory containing S and T also contains S ′ and T ′ and hence
S ′ ∗ T ′, the proof is complete. �

Proposition 3.9. For a cover Ui −→ U , the canonical Des(Ui, C) −→ Des(Ui,D)
is a deformation fitting into a diagram

D(U) �� Des(Ui,D)

C(U)

��

�� Des(Ui, C).

��

Proof. This follows from the fact that colimits (and hence also R-objects) in
Des(Ui,D) are pointwise. �

Proposition 3.10. Let F be a fibered category of localizations and let Ui −→ U be
a cover.

(1) The category Des(Ui,F) is a cocomplete abelian category with exact filtered
colimits.
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(2) The functor F(U) −→ Des(Ui,F) is exact and colimit preserving.
(3) The functor F(U) −→ Des(Ui,F) has a right adjoint l : Des(Ui,F) −→

F(U).

Proof. Since the restriction functors are exact left adjoints, it is easily seen that
all finite limit and arbitrary colimit constructions can be carried out “pointwise”
in Des(Ui,F); hence (1) and (2) follow. For the definition of l, consider a descent
datum FV ∈ F(V ) for V ⊂ Ui with isomorphisms FV |W ∼= FW for W ⊂ V . This de-
termines a diagram in F(U) consisting of the maps jU,V ∗FV −→ jU,W∗FW . We de-
fine l(FV ) to be the limit of this diagram in F(U). Consequently, for F ∈ F(U), we
have HomF(U)(F, l(FV )) = lim HomF(U)(F, jU,V ∗FV ) = lim HomF(UV )(F |V , FV ) =
HomDes(Ui,F)(F |V , FV ). �
Proposition 3.11. Suppose C is a fibered category of localizations and D is a
flat localization deformation of C. Suppose Ui −→ U is a covering for which the
category Des(Ui,D) is flat. If C(U) −→ Des(Ui, C) is an equivalence, then so is
D(U) −→ Des(Ui,D). In particular, if C is a stack and all the categories Des(Ui,D)
are flat, then D is a stack, hence a localization stack deformation of C.

Proof. The exact functor D(U) −→ Des(Ui,D) preserves coflat objects ([11]), and
its right adjoint preserves injectives. Consequently, we can apply [11, Theorem
7.3] twice to obtain that both functors are fully faithful; hence they constitute an
equivalence. �

We will now point out two situations in which the previous theorem applies.

Proposition 3.12. Consider an open covering Ui −→ U of U which is closed
under intersections. Suppose C is a flat fibered category of localizations on the Ui.
In either of the following two cases, the category Des(Ui, C) is flat.

(1) If C is complemented, then the restriction functor Des(Ui, C) −→ C(Ui)
has an exact left adjoint and the category Des(Ui, C) is flat.

(2) If the collection of Ui is finite and the functors jUk,Ui,∗ are exact, then the
restriction functor Des(Ui, C) −→ C(Ui) has an exact right adjoint and
the category Des(Ui, C) is flat.

Proof. (1) The restriction functor j∗Ui
: Des(Ui, C) −→ C(Ui) has an exact left

adjoint jUi! defined by

j∗Uk
jUi!Ci = jUk,Ui∩Uk!j

∗
Ui,Ui∩Uk

Ci.

Note that this defines a descent datum by compatibility (see Proposition 3.8).
Consider C ∈ Des(Ui, C). We have an epimorphism

∐
i jUi!j

∗
Ui

C −→ C. For
every i we pick an epimorphic effacement Pi −→ j∗Ui

C for Tor1(X,−) in C(Ui).
Since jUi! is exact and

∐
is exact in Des(Ui, C),

∐
i jUi!Pi −→

∐
i jUi!j

∗
Ui

C is an
epimorphic effacement for Tor1(X,−) in Des(Ui, C). (2) The restriction functor
j∗Ui

: Des(Ui, C) −→ C(Ui) has an exact right adjoint jUi∗ defined by

j∗Uk
jUi∗Ci = jUk,Ui∩Uk∗j

∗
Ui,Ui∩Uk

Ci.

Note that this defines a descent datum by compatibility (see Proposition 3.8).
Consider C ∈ Des(Ui, C). We have a monomorphism C −→

⊕
i jUi∗j

∗
Ui

C. For
every i we pick a monomorphic effacement j∗Ui

C −→ Ei for Ext1(X,−) in C(Ui).
Since jUi∗ is exact and ⊕ is exact in Des(Ui, C),

⊕
i jUi∗j

∗
Ui

C −→
⊕

i jUi∗Ei is a
monomorphic effacement for Ext1(X,−) in Des(Ui, C). �
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3.3. Lifting (G), (F) and (FF) under deformation. This section contains a
technical result on how the conditions (G), (F) and (FF) (see §2.7) can be lifted
under deformation. This result (Theorem 3.13) will be used in the main Theorem
3.14 of the main subsection (§3.4).

Consider a diagram
u

u ��

f

��

C
S⊗R−

��
v v

�� D
in which

• u is an R-linear functor from a small R-linear category to an R-linear
Grothendieck category.

• v is an S-linear functor from a small S-linear category to an S-linear
Grothendieck category.

• u(u) consists of flat objects.
• f is a not necessarily flat deformation of linear categories.
• S ⊗R − is left adjoint to an abelian deformation.

Theorem 3.13. If v satisfies (G), (F) and (FF), then so does u.

Proof of (F) and (FF). Consider the following diagram of presheaves on u:

TorR
1 (S, u(−, U)) ��

��

0

��
I ⊗R u(−, U) ��

��

C(u(−), I ⊗R u(U))

��
u(−, U) ��

��

C(u(−), u(U))

��
S ⊗R u(−, U) ��

��

C(u(−), S ⊗R u(U))

��
0 �� Ext1C(u(−), I ⊗R u(U)).

We are to prove that the middle arrow satisfies (F) and (FF). Since the lower one
satisfies (FF) and the upper one satisfies (F), it suffices to show that for X ∈
mod(S),

X ⊗S v(f(−), f(U)) −→ D(vf(−), X ⊗S vf(U))
satisfies (F) and (FF). Since both f and v satisfies (G) and (F), it suffices that

X ⊗S v(−, f(U)) −→ X ⊗S D(v(−), vf(U))

and
X ⊗S D(−, vf(U)) −→ D(−, X ⊗R vf(U))

satisfy (F) and (FF). The first map obviously does since v satisfies (F) and (FF).
The proof for the second map is similar to the proof of Proposition 3.20, but this
time we use the fact that Ext1D(−, D) is weakly effaceable. �
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Proof of (G). Consider C ∈ C, and write C as an extension E : 0 −→ IC −→ C −→
S ⊗R C −→ 0 of D-objects. We will construct an epimorphism ρ :

∐
i u(Ui) −→

S ⊗R C along which the pullback of E splits. Consequently, ρ will lift to an epi-
morphism

∐
i u(Ui) −→ C. First, take an epimorphism

∐
i u(Ui) −→

∐
i v(Vi) −→

S ⊗R C where f(Ui) = Vi. The pullback of E is an extension E′ : 0 −→ IC −→
C ′ −→

∐
i u(Ui). Since

∐
i u(Ui) is flat, E′ is the pullback of an extension E′′ :

0 −→ IC −→ D −→
∐

i v(Vi) in D. If we can split this extension by pulling
back along a map

∐
j v(Vj) −→

∐
i v(Vi) which lifts to

∐
j u(Uj) −→

∐
i u(Ui),

we are finished. For every finite subcoproduct
∐

K of
∐

i v(Vi), we consider the
pullback DK of D. Since v satisfies (G) and (F), we can generate DK with maps
v(VK,j) −→ DK such that all compositions v(VK,j) −→ v(Vi) are in the image of
v. The induced map

∐
v(VK,j) −→

∐
v(Vi) is epimorphic, splits E′′ and lifts to

u(u). �

3.4. Relation between linear and abelian deformations. In this section, we
will prove the following theorem:

Theorem 3.14. Let A be a locally flat linear algebroid prestack on X. There is
an equivalence between

(1) locally flat weak linear deformations of A,
(2) flat abelian deformations of the abelian category Mod(A),
(3) flat localization deformations of the fibered category Mod(A),
(4) flat localization stack deformations of the stack Mod(A).

If U ⊂ Open(X) is a basis of X, there is a further equivalence with

(5) locally flat weak linear deformations of A|U .

Proof. By Proposition 3.6, there is an equivalence between (2) and (3). If D is a flat
localization deformation of Mod(A), then by Proposition 3.7, D is complemented,
so by Propositions 3.12, 3.11, D is a stack deformation; hence (3) and (4) coincide. It
now suffices to show the equivalence of (2) and (5). Since U is a basis of X, we have
an equivalence of categories Mod(A|U) ∼= Mod(A). Suppose B −→ A|U is a locally
flat weak linear deformation. By Proposition 3.15, there is an induced flat abelian
deformation Mod(A) ∼= Mod(A|U) −→ Mod(B). Conversely, if Mod(A) −→ D(X)
is a flat abelian deformation, we look at the induced localization stack deformation
Mod(A) −→ D′ on X. By Proposition 3.17 (1), there is an induced weak linear
deformation A −→ B which restricts to A|U −→ B|U . By Proposition 3.18, making
a loop in (5) yields an equivalent deformation. By Proposition 3.17 (2), making a
loop in (2) yields an equivalent deformation. This finishes the proof. �

Proposition 3.15. Let U be a basis of X and A a locally flat prestack on U .
Suppose we are in one of the following cases:

(1) B −→ A is a flat linear deformation of fibered categories,
(2) B −→ A is a locally flat weak linear deformation of prestacks.

There is an induced flat deformation of abelian categories Mod(A) −→ Mod(B)
and an induced flat deformation of stacks Mod(A) −→ Mod(B). The latter can
be obtained from the former by taking induced deformations of the localizations
Mod(AU ) of Mod(A) for U ∈ U . Moreover, equivalent deformations of prestacks
yield equivalent abelian deformations.
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Proof. The statement concerning flatness follows from Proposition 2.5. If B −→ A
induces Mod(A) −→ Mod(B), then BU −→ AU induces Mod(AU ) −→ Mod(BU ) in
the same way, yielding a deformation of stacks which is indeed the induced stack of
localizations. In case (2), R ⊗S B −→ A consists of morphisms satisfying (G), (F)
and (FF), so there is an induced equivalence Mod(A) ∼= Mod(R ⊗S B) by Proposi-
tions 2.1, 2.9. So it remains to prove case (1). Consider
Mod(R⊗S B) −→ Mod(B). Let b be the additive category associated to B. The ad-
ditive category associated to R⊗S B is R⊗S b. By Proposition 2.18, we can look at
Sh(R⊗Sb, TR⊗SB) −→ Sh(b, TB) instead. By Proposition 3.16 and [11, §7], this map
is a deformation if TB = (TR⊗SB)R⊗S−. Let bi : Bi −→ B|Ui

be a potential covering
of B ∈ B(U) for TB. Its image in R ⊗S b is R ⊗S bi : R ⊗S Bi −→ (R ⊗S B)|Ui

.
Since R⊗S − : B(Ui) −→ R⊗S B(Ui) reflects isomorphisms, bi is a covering for TB
if and only if R ⊗S bi is a covering for TR⊗SB, which finishes the proof. �

We have used the following relation between topologies on b and R ⊗S b for a
linear category b:

Proposition 3.16. Let b be an S-linear category. Consider R⊗S− : b −→ R⊗S b.
(1) If T is a topology on b, then R ⊗S T is a topology on R ⊗S b.
(2) If T is a topology on R ⊗S b, then TR⊗S− is a topology on b.

Taking generated subfunctors yields a one-to-one correspondence between Grothen-
dieck topologies on b and R ⊗S b, compatible with the one-to-one correpondence
between localizations of Mod(b) and Mod(R ⊗S b) of [11, §7].

Proof. This is easily deduced from the correspondence between localizing subcate-
gories in Mod(b) and Mod(R ⊗S b) of [11, §7]. �

We will now give a converse to Proposition 3.15.

Proposition 3.17. Let A be a locally flat R-linear prestack on X. Suppose that
Mod(A) −→ D is a flat localization stack S-deformation. Let B = Ā be the full
subprestack of D spanned by the flat objects D ∈ D(U) with R ⊗S D ∈ A(U). We
have morphisms

B ��

��

D

��
A �� Mod(A).

The following are true:
(1) B −→ A is a locally flat weak linear deformation of prestacks,
(2) B −→ D yields an equivalence Mod(B) ∼= D.

Proof. (1) follows from Proposition 3.19. To prove (2), we use Theorem 2.22. First
note that by Proposition 3.7, D is a complemented stack of localizations, so the
theorem applies. To prove part (a), let b be the additive category of B. By (1) we
have a diagram

bU
��

��

D(U)

��
R ⊗S bU

�� Mod(A|U )
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in which the lower arrow satisfies (G), (F) and (FF). It follows from §3.3, Theorem
3.13 that the upper arrow also satisfies (G), (F) and (FF). Next we prove part
(b). On aU , by assumption, the covering systems Tepi,U and TU are equivalent.
We have to show that the same holds on bU . Consider ϕ : bU −→ aU and con-
sider a Tepi,U -covering bi : Bi −→ B in bU . The images ϕ(bi) : ϕ(Bi) −→ ϕ(B)
constitute a Tepi,U -covering of ϕ(B) in aU . Consequently, there is a covering
Wk −→ V such that for the canonical bk : B|Wk

−→ B, the morphisms ϕ(bk)
are in the generated subfunctor, i.e. there are finitely many ci : ϕ(B|Wk

) −→ ϕ(Bi)
with

∑
i ϕ(bi)ci = ϕ(bk). The morphisms ci are not in the image of ϕ, but

by Proposition 3.19, for every k there is a covering Wkl −→ Wk such that for
the canonical bkl : B|Wkl

−→ B|Wk
we have ciϕ(bkl) = ϕ(bikl). Consequently,

ϕ(
∑

i bi!bikl) = ϕ(bkbkl), so the morphism
∑

i bibikl, which is in the subfunctor gen-
erated by the covering bi, is defined by some B(Wkl)-morphism b : B|Wkl

−→ B|Wkl
,

which is mapped by B(Wkl) −→ A(Wkl) onto an isomorphism. Since B(Wkl) is a
full subcategory of flat objects in D(Wkl), it follows that b is itself an isomorphism,
which finishes the proof. �

Proposition 3.18. Let B −→ A be a locally flat weak linear deformation of alge-
broid prestacks on a basis U of X. We have morphisms

B ��

��

Ā ��

��

Mod(B)

��
A �� A �� Mod(A)

in which Ā −→ A is the deformation constructed in Proposition 3.17 (restricted to
U). The morphism B −→ Ā is fully faithful and satisfies (G).

Proof. This follows from Proposition 2.16. �

The remainder of this section contains auxiliary results for the proof of Proposi-
tion 3.17. We use the notation of Proposition 3.17. The following key result, which
proves Proposition 3.17(1), makes use of the obstruction theory for lifting objects
and maps in a deformation of abelian categories, as developed in [10].

Proposition 3.19. B −→ A satisfies (G) and (F) and R ⊗S B −→ A satisfies
(FF).

Proof. For AU ∈ A(U), the obstruction against lifting AU is o ∈ Ext2(AU , I⊗RAU ).
By local projectivity of AU , we can take a cover Ui −→ U such that o|Ui

= 0;
hence the objects AU |Ui

lift to D(Ui). For a map R ⊗S BU −→ R ⊗S B′
U , the

obstruction against lifting is in Ext1(R ⊗S BU , I ⊗S B′
U ), so the same argument

applies. Now consider b : B −→ B′ with R⊗S b = 0. So b ∈ D(U)(B, I ⊗S B′). By
Propositions 3.21 and 3.20, there is a cover Ui −→ U for which b|Ui

is in the image
of I ⊗S D(Ui)(B|Ui

, B′|Ui
). Consequently, b|Ui

is zero in R ⊗S B(Ui)(B|Ui
, B′|Ui

),
as desired. �

Let mod(R) denote the category of finitely presented R-modules.
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Proposition 3.20. Suppose B, B′ are flat in D(U) and B is locally projective. For
X ∈ mod(R), the morphism of presheaves on U/U ,

X ⊗R HomD(B, B′) −→ HomD(B, X ⊗R B′),

satisfies (F) and (FF).

Proof. Write 0 −→ K −→ Rn −→ X −→ 0 and consider the following diagram:

K ⊗R HomD(B, B′) α1
��

��

HomD(B, K ⊗R B′)

��
Rn ⊗R HomD(B, B′) α2

∼= ��

��

HomD(B, Rn ⊗R B′)

��
X ⊗R HomD(B, B′) α3

��

��

HomD(B, X ⊗R B′)

��
0 α4

��

��

Ext1D(B, K ⊗R B′)

��
0 α5

�� Ext1D(B, Rn ⊗R B′).

Since α5 satisfies (FF) and both α2 and α3 satisfy (F), α3 satisfies (F). Conse-
quently, α1 too satisfies (F). Hence, since both α2 and α4 satisfy (FF), the same
holds for α3. �

Proposition 3.21. Let B ∈ D(U) be a flat object. If R ⊗S B is locally projective
(resp. locally finitely presented) in Mod(A), the same holds for B in D.

Proof. For M ∈ Mod(A|U ), Exti
D(B, M) = Exti

Mod(A)(R ⊗S B, M). For general
M , it suffices to write M as an extension of objects in Mod(A|U ). �

3.5. The case of an acyclic basis. In this section we will briefly discuss the
relationship with some results in [11]. In particular we will reprove [11, Theorem
8.18]. We consider an R-linear algebroid prestack A on X and we suppose that X
has an acyclic basis U for A, i.e. for every U ∈ U , A, A′ ∈ A(U), M ∈ mod(R),
i = 1, 2 we have

Exti
Mod(A|U )(A, M ⊗R A′) = 0.

By Theorem 3.14, deforming the abelian category Mod(A) is equivalent to weakly
deforming the prestack A|U . In this section we show that it is also equivalent to
deforming A|U as a fibered category. The following theorem essentially generalizes
[11, Theorem 8.18].

Theorem 3.22. Let A be a locally flat R-linear algebroid prestack on X and let
U be an acyclic basis for A. Then A|U is flat as a fibered category and there is an
equivalence between:

(1) flat deformations of the fibered category A|U ,
(2) flat deformations of the linear category aU associated to A|U ,
(3) flat abelian deformations of the abelian category Mod(A).
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Proof. The equivalence of (1) and (2) follows from Propositions 3.1 and 3.3. The
remainder of the proof is a modification of the proof of Theorem 3.14. Let B −→ A|U
be a flat linear deformation of fibered categories. By Proposition 3.15, this yields
a flat abelian deformation Mod(A) ∼= Mod(AU ) −→ Mod(B). Conversely for a
flat abelian deformation Mod(A) −→ D(X) we look at the induced localization
stack deformation Mod(A) −→ D. This yields a weak deformation Ā −→ A as in
Proposition 3.17, only this time, by acyclicity, every A ∈ A(U) with U ∈ U has (up
to isomorphism) a unique flat lift to D(U), and every Ā(U) −→ A(U) is actually
a deformation of linear categories. It remains to say why the linear deformation
B −→ A|U is equivalent to Ā|U −→ A|U obtained from Mod(A|U) −→ Mod(B).
Certainly B −→ Mod(B) factors over B −→ Ā|U and the functors B(U) −→ Ā(U)
are essentially surjective. That they are also fully faithful easily follows from the
5-lemma since the functors A(U) −→ Mod(A|U ) are. �

Corollary 3.23. Let O be a locally flat (twisted) sheaf of R-algebras on X and let
U be an acyclic basis for O. Then O|U is flat as a (twisted) presheaf and there is
an equivalence between:

(1) flat deformations of O|U as a twisted presheaf,
(2) flat deformations of the linear category oU associated to O|U ,
(3) flat deformations of the abelian category Mod(O).

Proof. This follows from Theorem 3.22 and Proposition 3.4. �

Remark 3.24. By [11, Prop. 6.13], if B is a locally flat weak linear deformation of
A and U is an acyclic open subset for A, then U is an acyclic open subset for B.
Hence for algebroid prestacks on X, an acyclic basis “lifts” under flat weak linear
deformation.

3.6. Quasi-coherent sheaves. If (X,O) is a quasi-compact, separated scheme, we
know that the abelian categories Mod(O) of sheaves of modules on X, and Qch(O)
of quasi-coherent sheaves of modules on X have the same Hochschild cohomology
[12]. In this section we prove the deformation analogon of this result.

Let A be an algebroid prestack on X. The restriction morphisms A(U) −→
A(V ) can be uniquely extended to colimit-preserving functors Mod(A(U)) −→
Mod(A(V )) defining a fibered category of abelian categories, which we will denote
by Add(A) to distinguish in notation from Mod(A). If U is a covering of X, we
put Qch(U ,A) = Des(U ,Add(A)). We consider the fibered category Qch(U ,A) on
U ∪ {X} with Qch(U ,A)(U) = Mod(A(U)) and Qch(U ,A)(X) = Qch(U ,A).

Proposition 3.25. Let A and U be as above and suppose V ⊂ U is a finite covering
of X which is closed under intersections, and such that every U ∈ U is contained in
some V ∈ V. Then we have an equivalence of categories Qch(U ,A) ∼= Qch(V ,A).

�

Theorem 3.26. Let A be a locally flat R-linear algebroid prestack on X with an
acyclic basis U . Suppose V ⊂ U is a finite covering of X which is closed under
intersections and such that every U ∈ U is contained in some V ∈ V. Suppose that
Qch(U ,A) is a fibered category of localizations. The fibered category A|U is flat
and the abelian category Qch(U ,A) ∼= Qch(V ,A) is flat. There is an equivalence
between:

(1) flat abelian deformations of the abelian category Mod(A),
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(2) flat linear deformations of the fibered category A|V ,
(3) flat abelian deformations of the abelian category Qch(U ,A).

Proof. By Theorem 3.22, (1) can be replaced by

(1′) flat linear deformations of the fibered category A|U .

Flatness of A|U is stated in Theorem 3.22. By Proposition 3.25, Qch(U ,A) ∼=
Qch(V ,A). Consider the fibered category Add(A)|V . For V ′ ⊂ V in V , the right
adjoint of Mod(A(V )) −→ Mod(A(V ′)) is the forgetful functor composition with
A(V ) −→ A(V ′), which is obviously exact. Hence by Proposition 3.12(2), the
category Qch(V ,A) = Des(V ,Add(A)) is flat.

We can go from (1′) to (2) simply by restriction. Suppose we have a flat linear
deformation B −→ A|V . The corresponding abelian deformations Mod(A(V )) −→
Mod(B(V )) obviously define a flat abelian deformation Add(A|V) −→ Add(B),
which is a localization deformation by [11, Theorem 7.3]. Again by Proposition
3.12(2), the category Des(V ,Add(B)) is a flat abelian deformation of Qch(V ,A),
and we arrive at (3). Also, the restrictions Des(V ,Add(B)) −→ Mod(B(V )) have
exact adjoints, so by [11, Theorem 7.3] they constitute localizations.

Now suppose Qch(U ,A) −→ Q(X) is a flat abelian deformation. The fibered
category of localizations Qch(U ,A) on X induces a fibered category of localizations
Q deforming Qch(U ,A). For U ∈ U , the projective generators A(U) of Mod(A(U))
can be uniquely lifted to Q(U), yielding equivalences Mod(B(U)) −→ Q(U) and
functors B(U) −→ B(U ′) turning B into a linear deformation of A|U , and we arrive
at (1′).

To see that a loop in (3) yields equivalent deformations, it suffices to note that
by flatness of Des(V ,Add(B)), we get an equivalence Q(X) −→ Des(V ,Add(B)) by
Proposition 3.11. To see that a loop in (1′) or (2) yields equivalent deformations,
it suffices to note that for U ∈ U , U ⊂ V , V ∈ V , starting from (1′) or (2) we
get localizations Mod(B(U)) −→ Mod(B(V )) −→ Des(V ,Add(B)) which are then
necessarily the induced deformations. �

Corollary 3.27. Suppose (X,O) is a quasi-compact, separated scheme such that
O is flat in Mod(O). Then the abelian categories Mod(O) and Qch(O) are flat and
there is an equivalence between:

(1) flat abelian deformations of Mod(O),
(2) flat abelian deformations of Qch(O).

If V is a finite affine covering of X closed under intersections, there is a further
equivalence with

(3) flat deformations of O|V as a twisted presheaf,
(4) flat deformations of the linear category oV associated to O|V .

Remark 3.28. For an arbitrary algebroid prestack A on X, we can define the stack of
quasi-coherent sheaves over A to be the associated stack of Add(A), i.e. Qch(A) =
as(Add(A)). The abelian category of quasicoherent sheaves on an open subset U
is by definition the category Qch(A)(U) and Qch(A) = Qch(A)(X). If (X,O) is a
scheme, then Add(O)|U is a stack on the basis U of affine open sets. Consequently,
Qch(O) = Qch(U ,O). It is not (yet) clear to us in which generality there is an
equivalence between the abelian deformations of Mod(A) and of Qch(A).
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